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Power flow analysis of power system is used to determine the steady 
state solution for a given set of bus loading condition. 
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Parameters
• Network topology 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖
• Line conductance and susceptance 𝐺𝐺𝑖𝑖𝑖𝑖, 𝐵𝐵𝑖𝑖𝑖𝑖

Variables 
• Bus voltage magnitudes and bus phase angles 𝑉𝑉𝑖𝑖, 𝜃𝜃𝑖𝑖
• Line active and reactive power flow 𝑃𝑃𝑖𝑖𝑖𝑖, 𝑄𝑄𝑖𝑖𝑖𝑖
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Usually, two of the four variables are known for each bus: 
• PQ bus (load) at which 𝑃𝑃 and 𝑄𝑄 are fixed; iteration solves for V 

and 𝜃𝜃 .
• PV bus (generator) at which P and V are fixed; iteration solves 

for 𝜃𝜃 and 𝑄𝑄.
• Slack bus at which the V and 𝜃𝜃 are fixed; iteration solves for P 

and Q.
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Gauss-Seidel method 
• It needs to rewrite the equations in an implicit form: 𝑥𝑥 = ℎ(𝑥𝑥) 
• It starts with initial guess: 𝑥𝑥0
• Then we update the solution using the following form: 𝑥𝑥𝑛𝑛+1 = ℎ(𝑥𝑥𝑛𝑛) 
• It repeats the procedure until converged

It needs to put the equation in the correct form: 

𝑉𝑉𝑖𝑖𝑛𝑛+1 =
1
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The update rule for each bus voltage:
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Newton-Raphson method
• 𝑥𝑥 is the vector of 𝜃𝜃 and 𝑉𝑉 for all the buses, except for the slack 

bus.
• Active and reactive power balance equation: 𝑓𝑓(𝑥𝑥)

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 − 𝐽𝐽−1(𝑥𝑥𝑛𝑛)𝑓𝑓 𝑥𝑥𝑛𝑛

where 𝑥𝑥 = 𝜃𝜃
𝑉𝑉 𝑓𝑓 𝑥𝑥 = 𝑃𝑃 𝑥𝑥

𝑄𝑄 𝑥𝑥 J 𝑥𝑥 =
𝜕𝜕𝑃𝑃
𝜕𝜕𝜃𝜃

𝜕𝜕𝑃𝑃
𝜕𝜕𝑉𝑉

𝜕𝜕𝑄𝑄
𝜕𝜕𝜃𝜃

𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉

Compared to Gauss-Seidel method, Newton-Raphson method has a 
faster convergence rate, but each iteration takes much longer time. 
Also, Newton-Raphson is more complicated to code.  
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Decoupled Newton-Raphson method
• Approximation of the Jacobian matrix is used to decouple the real and reaction power 

equations.  

J 𝑥𝑥 =
𝜕𝜕𝑃𝑃
𝜕𝜕𝜃𝜃

0

0 𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉

Accelerated (convergence) Gauss-Seidel method
• Previously, it calculates each value 𝑥𝑥 as: 𝑥𝑥𝑛𝑛+1= ℎ(𝑥𝑥𝑛𝑛)  
• To accelerate convergence, the above equation can be rewritten as: 𝑥𝑥𝑛𝑛+1= 𝑥𝑥𝑛𝑛 +

ℎ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛
• Acceleration parameter 𝛼𝛼: 𝑥𝑥𝑛𝑛+1= 𝑥𝑥𝑛𝑛 + 𝛼𝛼(ℎ 𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛)
• Larger value of 𝛼𝛼 may result in faster convergence

Assume 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖 ≈ 0, thus sin 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖 ≈ 0 

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑉𝑉𝑖𝑖

= 𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖 ≈ 0

𝜕𝜕𝑄𝑄𝑖𝑖
𝜕𝜕𝜃𝜃𝑖𝑖

= − 𝑉𝑉𝑖𝑖 𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖 ≈ 0

𝜃𝜃𝑛𝑛+1 = 𝜃𝜃𝑛𝑛 −
𝜕𝜕𝑃𝑃
𝜕𝜕𝜃𝜃

−1

𝑃𝑃 𝑥𝑥𝑛𝑛

𝑉𝑉𝑛𝑛+1 = 𝑉𝑉𝑛𝑛 −
𝜕𝜕𝑄𝑄
𝜕𝜕𝑉𝑉

−1

𝑄𝑄 𝑥𝑥𝑛𝑛
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Traditional Gauss-Seidel method and Newton-Raphson method need 
the calculation of the Y matrix and Jacobian matrix. 

When solving large power systems, the most difficult computation task 
is inverting the Y matrix and Jacobian matrix:

• Inverting a full matrix needs an order of 𝑛𝑛3 operation, meaning the 
amount of computation increases with the cube of the size 𝑛𝑛. 

• This amount of computation can be decreased substantially by 
recognizing both Y matrix and Jacobian matrix are sparse matrices. 

• Using sparse matrix methods results in a computational order of 
about 𝑛𝑛1.5.
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Because of the following special features in distribution network, the Y matrix and 
Jacobian matrix ceases to be diagonally dominant and convergence problems arise in 
power flow solutions that rely on its inverse [1]. 

• Radial or near radial structure
• High R/X rations
• Un-transposed lines
• Multi-phase, unbalanced, grounded or ungrounded operation
• Multi-phase, multi-mode control distribution equipment
• Unbalanced distributed load
• Extremely large number of branches/nodes

Thus, traditional Gauss-Seidel method and Newton-Raphson method have lost 
popularity due to their poor convergence in distribution system studies. 

[1] C. S. Cheng and D. Shirmohammadi, "A three-phase power flow method for real-time distribution system analysis," in IEEE Transactions on Power Systems, vol. 10, 
no. 2, pp. 671-679, May 1995.
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Condition number defines the condition of a matrix with respect to the computing problem. 
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽) and 𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛(𝐽𝐽) are maximum and minimum eigenvalues of matrix 𝐽𝐽.

𝑘𝑘 𝐽𝐽 =
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐽𝐽)
𝜆𝜆𝑚𝑚𝑖𝑖𝑛𝑛(𝐽𝐽)

A very high value of the condition number of matrix 𝐽𝐽 indicates that: 
• The system is ill-conditioned, the computed values are very sensitive to small 

changes in input values.
• The matrix 𝐽𝐽 is invertible.

[2] S. C. Tripathy and G. S. S. S. K. Purge Prasad, "Load flow solution for ill-conditioned power systems by quadratically convergent Newton-like method," in IEE 
Proceedings C - Generation, Transmission and Distribution, vol. 127, no. 5, pp. 273-280, September 1980.

Tab.1 Maximum and Minimum Eigenvalues and Condition Number [2]
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Methods developed for the solution of ill-conditioned radial distribution systems may 
be divided into two categories [3]:

• Forward and/or backward sweep 
• Kirchhoff’s formulation

• BIBC & BCBV
• Quadratic equation-based algorithm

• Dist-Flow 
• Modification of existing methods 

• Modified N-R method 

Forward/backward sweep-based power flow algorithm generally takes advantage of 
the radial network topology and consists of forward and backward sweep processes. 

• The forward sweep is mainly the node voltage calculation from the sending 
end to the far end of the lines.

• The backward sweep is primarily the branch current or power summation 
from the far end to the sending end of the lines.

[3] U. Eminoglu & M. H. Hocaoglu, “Distribution Systems Forward/ Backward Sweep-based Power Flow Algorithms: A Review and Comparison Study’, in Electric Power 
Components and Systems, 37:1, 91-110, 2008
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Fig.3 Linear Ladder network [4] 

Fig.1 shows a linear ladder network [4].
• For the ladder network, it is assumed that all of the line impedances and load 

impedances are known along with the voltage (VS) at the source. 
• The solution for this network is to perform the “forward” sweep by calculating the 

voltage at node 5 (V5) under a no-load condition. 
• With no load currents there are no line currents, so the computed voltage at node 5 

will equal that of the specified voltage at the source. 
• The “backward” sweep commences by computing the load current at node 5. 

The load current I5 is 𝐼𝐼5 =
𝑉𝑉5
𝑍𝑍𝑍𝑍5

Forward/Backward Sweep-based Algorithm 
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For this “end node” case, the line current I45 is equal to the load current I5. The “backward” 
sweep continues by applying Kirchhoff's voltage law (KVL) to calculate the voltage at node 4:

𝑉𝑉4 = 𝑉𝑉5 + 𝑍𝑍45 � 𝐼𝐼45
The load current I4 can be determined and then Kirchhoff's current law (KCL) applied to 
determine the line current I34:

𝐼𝐼34 = 𝐼𝐼45 + 𝐼𝐼4

Forward/Backward Sweep-based Algorithm 

Fig.3 Linear Ladder network [4] 

KVL is applied to determine the node voltage V3. The backward sweep continues until a 
voltage (V1) has been computed at the source. 

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.

𝐼𝐼45=𝐼𝐼5

𝐼𝐼4 =
𝑉𝑉4
𝑍𝑍𝑍𝑍4

𝑉𝑉3 = 𝑉𝑉4 + 𝑍𝑍34 � 𝐼𝐼34

𝑉𝑉1

…
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The computed voltage V1 is compared to the specified voltage VS. There 
will be a difference between these two voltages. The ratio of the 
specified voltage to the compute voltage can be determined as

Forward/Backward Sweep-based Algorithm 

Since the network is linear, all of the line and load currents and node 
voltages in the network can be multiplied by the ratio for the final 
solution to the network.

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑉𝑉𝑆𝑆
𝑉𝑉1

Fig.3 Linear Ladder network [4] 
[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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The linear network of Fig.3 is modified to a nonlinear network by 
replacing all of the constant load impedances by constant complex 
power loads as shown in Fig.4.

As with the linear network, the “forward” sweep computes the voltage 
at node 5 assuming no load. As before, the node 5 (end node) voltage 
will equal that of the specified source voltage. In general, the load 
current at each node is computed by

𝐼𝐼𝑛𝑛 =
𝑆𝑆𝑛𝑛
𝑉𝑉𝑛𝑛

∗

Forward/Backward Sweep-based Algorithm 

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
Fig. 4 Nonlinear ladder network [4] 
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The “backward” sweep will determine a computed source voltage V1. 
• As in the linear case, this first “iteration” will produce a voltage that is not equal to 

the specified source voltage VS. Because the network is nonlinear, multiplying 
currents and voltages by the ratio of the specified voltage to the computed voltage 
will not give the solution. 

• The most direct modification using the ladder network theory is to perform a 
“forward” sweep. The forward sweep commences by using the specified source 
voltage and the line currents from the previous “backward” sweep. KVL is used to 
compute the voltage at node 2 by

𝑉𝑉2 = 𝑉𝑉𝑠𝑠 − 𝑍𝑍12 � 𝐼𝐼12

Forward/Backward Sweep-based Algorithm 

Fig. 4 Nonlinear ladder network [4] 
[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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This procedure is repeated for each line segment until a “new” voltage is determined 
at node 5. 

• Using the “new” voltage at node 5, a second backward sweep is started that 
will lead to a “new” computed voltage at the source.

• The procedure shown earlier works but, in general, will require more time to 
converge. A modified version is to perform the “forward” sweep calculating 
all of the node voltages using the line currents from the previous “backward” 
sweep. 

• The new “backward” sweep will use the node voltages from the previous 
“forward” sweep to compute the new load and line currents. 

• In general, this modification will require more iterations but less time to 
converge. In this modified version of the ladder technique, convergence is 
determined by computing the ratio of difference between the voltages at the n 
− 1 and n iterations and the nominal line-to-neutral voltage. Convergence is 
achieved when all of the phase voltages at all nodes satisfy

𝑉𝑉𝑛𝑛 − 𝑉𝑉𝑛𝑛−1
𝑉𝑉𝑛𝑛𝑛𝑛𝑚𝑚𝑖𝑖𝑚𝑚𝑛𝑛

≤ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑓𝑓𝑎𝑎𝑆𝑆𝑆𝑆 𝑎𝑎𝑎𝑎𝑡𝑡𝑆𝑆𝑡𝑡𝑎𝑎𝑛𝑛𝑆𝑆𝑆𝑆

Forward/Backward Sweep-based Algorithm 

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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A single-phase lateral is shown in Fig.5. The line impedance is
𝑧𝑧 = 0.3 + 𝑗𝑗𝑗.6 ⁄Ω 𝑚𝑚𝑎𝑎𝑡𝑡𝑆𝑆

The impedance of the line segment 1–2 is
𝑍𝑍12 = 0.3 + 𝑗𝑗𝑗.6  � 3000

5280
= 0.1705 + 𝑗𝑗𝑗.3409 Ω

The impedance of the line segment 2–3 is
𝑍𝑍23 = 0.3 + 𝑗𝑗𝑗.6  � 4000

5280
= 0.2273 + 𝑗𝑗𝑗.4545 Ω

Fig.5 Single-phase lateral [4]

Example

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.

Use the modified ladder method to compute the load voltage.
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The loads are
𝑆𝑆2 = 1500 + 𝑗𝑗750 (𝑘𝑘𝑘𝑘 + 𝑗𝑗𝑘𝑘𝑗𝑗𝑎𝑎𝑡𝑡) 𝑆𝑆3 = 900 + 𝑗𝑗500 (𝑘𝑘𝑘𝑘 + 𝑗𝑗𝑘𝑘𝑗𝑗𝑎𝑎𝑡𝑡)

The source voltage at node 1 is 7200 V.

Set initial conditions:
𝐼𝐼12 = 𝐼𝐼23 = 0 𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜 = 0 𝑇𝑇𝑎𝑎𝑡𝑡. = 0.0001

The first forward sweep:

𝑉𝑉2 = 𝑉𝑉𝑠𝑠 − 𝑍𝑍12 � 𝐼𝐼12 = 7200∠𝑗 𝑉𝑉3 = 𝑉𝑉2 − 𝑍𝑍23 � 𝐼𝐼23 = 7200∠𝑗 

𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 =
𝑉𝑉3 − 𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜

7200
= 1 (𝑔𝑔𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑆𝑆𝑡𝑡 𝑎𝑎ℎ𝑎𝑎𝑛𝑛 𝑇𝑇𝑎𝑎𝑡𝑡, 𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑏𝑏𝑎𝑎𝑆𝑆𝑘𝑘𝑏𝑏𝑎𝑎𝑡𝑡𝑆𝑆 𝑠𝑠𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆)

𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜 = 𝑉𝑉3

Example

Fig.5 Single-phase lateral [4]
[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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The first backward sweep:
𝐼𝐼3 =

(900 + 𝑗𝑗𝑗𝑗𝑗) � 1000
7200∠𝑗

∗

= 143.0∠ − 29.0 𝐴𝐴

The current flowing in the line segment 2–3 is

𝐼𝐼23 = 𝐼𝐼3 = 143.0∠ − 29.0 𝐴𝐴
The load current at node 2 is

𝐼𝐼2 =
(1500 + 𝑗𝑗750) � 1000

7200∠0

∗

= 232.9∠ − 27.5 𝐴𝐴

The second forward sweep:
𝐼𝐼12 = 𝐼𝐼23 + 𝐼𝐼2 = 373.8∠ − 27.5 𝐴𝐴

The current in line segment 1–2 is

𝑉𝑉2 = 𝑉𝑉2 − 𝑍𝑍12 � 𝐼𝐼12 =7084.5∠ − 0.7 𝑉𝑉3 = 𝑉𝑉2 − 𝑍𝑍23 � 𝐼𝐼23 =7025.1∠ − 1.0

𝐸𝐸𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡 =
𝑉𝑉3 − 𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜

7200
=

7084.5 − 7200
7200

= 0.0243(𝑔𝑔𝑡𝑡𝑆𝑆𝑎𝑎𝑎𝑎𝑆𝑆𝑡𝑡 𝑎𝑎ℎ𝑎𝑎𝑛𝑛 𝑇𝑇𝑎𝑎𝑡𝑡, 𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎 𝑏𝑏𝑎𝑎𝑆𝑆𝑘𝑘𝑏𝑏𝑎𝑎𝑡𝑡𝑆𝑆 𝑠𝑠𝑏𝑏𝑆𝑆𝑆𝑆𝑆𝑆)

Example

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.

𝑉𝑉𝑛𝑛𝑛𝑛𝑜𝑜 = 𝑉𝑉3
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At this point, the second backward sweep is used to compute the new 
line currents. Then it is followed by the third forward sweep. 

After four iterations, the voltages have converged to an error of 
0.000017 with the final voltages and currents of

[𝑉𝑉2]=7081.0∠ − 0.68 

[𝑉𝑉3]=7019.3∠ − 1.02 

[𝐼𝐼12]=383.4∠ − 28.33 

[𝐼𝐼23]=146.7∠ − 30.07 

Example

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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Forward/Backward Sweep-based Algorithm

Fig.6 Standard feeder series component model [4]

With reference to Fig.6, the forward and backward sweep equations are

[𝑉𝑉𝑍𝑍𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎]𝑚𝑚= 𝐴𝐴 � [𝑉𝑉𝑍𝑍𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎]𝑛𝑛 − 𝐵𝐵 � [𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎]𝑛𝑛Forward sweep:

[𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎]𝑛𝑛= 𝑆𝑆 � [𝑉𝑉𝑍𝑍𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎]𝑚𝑚 + 𝑆𝑆 � [𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎]𝑚𝑚Backward sweep:

It was also shown that for the grounded wye–delta transformer bank, the backward 
sweep equation is

[𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎]𝑛𝑛= 𝑥𝑥𝑡𝑡 � [𝑉𝑉𝑍𝑍𝑁𝑁𝑚𝑚𝑎𝑎𝑎𝑎]𝑛𝑛 + 𝑆𝑆 � [𝐼𝐼𝑚𝑚𝑎𝑎𝑎𝑎]𝑚𝑚

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.
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Forward/Backward Sweep-based Algorithm
• In Fig. 7, nodes 4, 10, 5, and 7 are referred to as “junction nodes.” 

• In the forward sweep, the voltages at all nodes down the lines from the junction nodes 
must be computed. 

• In the backward sweeps, the currents at the junction nodes must be summed before 
proceeding toward the source. 

• In developing a program to apply the modified ladder method, it is necessary for the 
ordering of the lines and nodes to be such that all node voltages in the forward sweep are 
computed and all currents in the backward sweep are computed.

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.

Fig.7 Typical distribution feeder [4]
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Fig.8 Simple modified ladder flowchart [4]

A simple flowchart of the Forward/Backward sweep-based algorithm is 
shown in Fig.8.

[4] Kersting, William H. Distribution system modeling and analysis 4th edition. CRC press, 2017.

𝐼𝐼𝑎𝑎𝑏𝑏𝑚𝑚𝑛𝑛𝑎𝑎𝑏
(0) = 0 𝑉𝑉𝑎𝑎𝑏𝑏𝑠𝑠

(0) = 1

𝑉𝑉𝑎𝑎𝑏𝑏𝑠𝑠
(𝑘𝑘+1) − 𝑉𝑉𝑎𝑎𝑏𝑏𝑠𝑠

(𝑘𝑘)



BIBC matrix and BCBV matrix   
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There are two matrices can be used to improve computational efficiency, which 
takes advantages of the topological characteristics of distribution systems and 
solves the distribution load flow [5]:

Bus Injection to Bus Current (BIBC) matrix: relationship between the bus current 
injections and branch currents

Branch current to Bus Voltage (BCBV) matrix: relationship between the branch 
currents and bus voltages

The reason why the BIBC and BCBV are applied:
• In conventional forward/backward sweep method, the bus voltages and line currents are 

calculated segments by segments (with topological characteristics) in each iteration. 
• While by using the BIBC and BCBV, the two matrices are calculated only once and they 

have already included all topological information. BIBC/BCBV will not be updated in 
each iteration. Only voltage drop and branch currents will be updated. 

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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𝐵𝐵1 = 𝐼𝐼2+𝐼𝐼3+𝐼𝐼4+𝐼𝐼5+𝐼𝐼6

𝐵𝐵3 = 𝐼𝐼4+𝐼𝐼5
𝐵𝐵5 = 𝐼𝐼6

𝐵𝐵 = 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼

BIBC matrix and BCBV matrix   

Fig.9 Equivalent Current Injection based Model of Distribution 
Network [5] 

B is branch current
I is bus current injection

Relationship between the bus current injections and 
branch currents

The constant BIBC matrix is an upper triangular 
matrix and contains values of 0 and 1 only.

By using the KCL

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   

To build BIBC matrix:
Step.1 For a distribution system with m-branch section and n-bus, 
the dimension of the BIBC matrix is 𝑚𝑚 × 𝑛𝑛 − 1 .

Step.2 If a line section is located between bus i and bus j, copy the 
column of the i-th bus of the BIBC matrix to the column of the j-th 
bus and fill a +1 to the position of the k-th row and the j-th bus 
column

Step.3 Repeat Step.2 until all line sections are included in the BIBC 
matrix

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   

Fig.10 Equivalent Current Injection based Model of Distribution 
Network [5] 

V is bus voltage 
Z is line impedance

Relationship between branch currents and bus voltages

𝑉𝑉2 = 𝑉𝑉1 − 𝐵𝐵1𝑍𝑍12

𝑉𝑉3 = 𝑉𝑉2 − 𝐵𝐵2𝑍𝑍23
𝑉𝑉4 = 𝑉𝑉3 − 𝐵𝐵3𝑍𝑍34

𝑉𝑉4 = 𝑉𝑉1 − 𝐵𝐵1𝑍𝑍12 −𝐵𝐵2𝑍𝑍23 −𝐵𝐵3𝑍𝑍34

[∆𝑉𝑉] = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵
The constant BIBC matrix is a lower triangular matrix 
and contains values of 0 and line impedance only.

By using the KVL

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   

To build BCBV matrix:
Step.1 For a distribution system with m-branch section and n-bus, 
the dimension of the BCBV matrix is n × 𝑚𝑚− 1 .

Step.2 If a line section is located between bus i and bus j, copy the 
column of the i-th bus of the BCBV matrix to the column of the j-th 
bus and fill the line impedance 𝑍𝑍𝑖𝑖𝑖𝑖 to the position of the j-th row and 
the k-th bus column.

Step.3 Repeat Step.2 until all line sections are included in the BCBV 
matrix.

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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Three-phase BCBV matrix   
The algorithm can easily be expanded to a multiphase line section or bus. 

For example, if the line section between bus i and bus j is a three-phase line section, 
the corresponding branch current 𝐵𝐵𝑖𝑖 will be a 3 × 1 vector and the in the BIBC 
matrix will be a 3 × 3 identity matrix.

Similarly, if the line section between bus i and bus j is a three-phase line section, the 
𝑍𝑍𝑖𝑖𝑖𝑖 in the BCBV matrix is a 3 × 3 impedance matrix as follows.

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.

Fig.11 Three-phase line section model [5]

𝑍𝑍𝑚𝑚𝑎𝑎𝑎𝑎 =
𝑍𝑍𝑚𝑚𝑚𝑚−𝑛𝑛 𝑍𝑍𝑚𝑚𝑎𝑎−𝑛𝑛 𝑍𝑍𝑚𝑚𝑎𝑎−𝑛𝑛
𝑍𝑍𝑎𝑎𝑚𝑚−𝑛𝑛 𝑍𝑍𝑎𝑎𝑎𝑎−𝑛𝑛 𝑍𝑍𝑎𝑎𝑎𝑎−𝑛𝑛
𝑍𝑍𝑎𝑎𝑚𝑚−𝑛𝑛 𝑍𝑍𝑎𝑎𝑎𝑎−𝑛𝑛 𝑍𝑍𝑎𝑎𝑎𝑎−𝑛𝑛
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[∆𝑉𝑉] = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼 = 𝑫𝑫𝑫𝑫𝑫𝑫 𝐼𝐼

Distribution Load Flow (DLF) matrix is a multiplication matrix of BCBV and BIBC 
matrices. 

𝐼𝐼𝑖𝑖𝑘𝑘 = 𝐼𝐼𝑖𝑖𝑘𝑘𝑉𝑉𝑖𝑖𝑘𝑘 + 𝑗𝑗𝐼𝐼𝑖𝑖𝑘𝑘𝑉𝑉𝑖𝑖𝑘𝑘 =
𝑃𝑃𝑖𝑖 + 𝑗𝑗𝑄𝑄𝑖𝑖
𝑉𝑉𝑖𝑖𝑘𝑘

∗

∆𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝐷𝐷𝑍𝑍𝐿𝐿 𝐼𝐼𝑖𝑖𝑘𝑘

𝐵𝐵 = 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼 [∆𝑉𝑉] = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵

BIBC matrix and BCBV matrix   

𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝑉𝑉0 + ∆𝑉𝑉𝑖𝑖𝑘𝑘+1

The solution for distribution load flow can be updated and obtained iteratively as 
follows:

• The voltage drop on each branch is computed 
using the DLF and load currents.

• The node voltages are computed by using the 
source bus voltage and voltage drops. 

Combine two steps into one

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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Step.1 Input the radial system topology data

Step.2 Form the BIBC matrix 

Step.3 Form the BCBV matrix 

Step.4 Calculate DLF matrix and set iteration k=0

BIBC matrix and BCBV matrix   

𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 = 𝐼𝐼 / 𝐵𝐵

𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 = 𝐵𝐵  /[∆𝑉𝑉]

𝑫𝑫𝑫𝑫𝑫𝑫 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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Step.4 Calculate DLF matrix and set iteration k=0

Step.5 Update voltage and iteration k=k+1

Step.6 If 𝑉𝑉𝑖𝑖𝑘𝑘+1 − 𝑉𝑉𝑖𝑖𝑘𝑘 < tolerance, go to next step; else, go back to Step. 5

Step.7 Calculate line flows and power losses using final voltage 

BIBC matrix and BCBV matrix   

𝑫𝑫𝑫𝑫𝑫𝑫 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼

𝐼𝐼𝑖𝑖𝑘𝑘 = 𝐼𝐼𝑖𝑖𝑘𝑘𝑉𝑉𝑖𝑖𝑘𝑘 + 𝑗𝑗𝐼𝐼𝑖𝑖𝑘𝑘𝑉𝑉𝑖𝑖𝑘𝑘 =
𝑃𝑃𝑖𝑖 + 𝑗𝑗𝑄𝑄𝑖𝑖
𝑉𝑉𝑖𝑖𝑘𝑘

∗
∆𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝐷𝐷𝑍𝑍𝐿𝐿 𝐼𝐼𝑖𝑖𝑘𝑘

𝑉𝑉𝑖𝑖𝑘𝑘+1 = 𝑉𝑉0 + ∆𝑉𝑉𝑖𝑖𝑘𝑘+1

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   
Some distribution feeders serve high-density load areas and contain loops. The 
proposed method introduced before can be extended for “weakly-meshed” 
distribution feeders.

Modification for BIBC matrix:

Fig.12 Simple distribution system with one loop [5]

Taking the new branch current into account, the 
current injections of bus 5 and bus 6 will be:

𝐼𝐼5′ = 𝐼𝐼5 + 𝐵𝐵6
𝐼𝐼6′ = 𝐼𝐼6 − 𝐵𝐵6

𝐵𝐵
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

= 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   
Modification for BCBV matrix:
Considering the loop shown in Fig. 12, KVL for this loop can be written as:

𝐵𝐵3𝑍𝑍34 +𝐵𝐵4𝑍𝑍45 +𝐵𝐵6𝑍𝑍56−𝐵𝐵5𝑍𝑍36= 0

The new BCBV matrix is:

∆𝑉𝑉
0 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵

𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.

Fig.12 Simple distribution system with one loop [5]



36

BIBC matrix and BCBV matrix   
Modification for solution techniques:

∆𝑉𝑉
0 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵

𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

𝐵𝐵
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

= 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼
𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

∆𝑉𝑉
0 = 𝐵𝐵𝐼𝐼𝐵𝐵𝑉𝑉 𝐵𝐵𝐼𝐼𝐵𝐵𝐼𝐼 𝐼𝐼

𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛
= 𝐴𝐴 𝑀𝑀𝑇𝑇

𝑀𝑀 𝑁𝑁
𝐼𝐼

𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛

The modified algorithm for weakly meshed networks can be expressed as

∆𝑉𝑉 = 𝐴𝐴 −𝑀𝑀𝑇𝑇𝑁𝑁−1𝑀𝑀 𝐼𝐼 = 𝐷𝐷𝑍𝑍𝐿𝐿 𝐼𝐼

Except for some modifications needed to be done for the BIBC, BCBV, and DLF 
matrices, the proposed solution techniques require no modification.

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   

The proposed three-phase load flow algorithm was implemented on an 
8-bus distribution system. Two methods are used for tests and the 
convergence tolerance is set at 0.001.
• Method 1: The Gauss implicit Z-matrix method 
• Method 2: The proposed algorithm with BIBC and BCBV 

Fig.13 A 8-bus radial distribution system [5]

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   
The final voltage solutions of method 1 and method 2 are shown in Tab.2. 
From Tab.2, the final converged voltage solutions of method 2 are very close to the 
solution of method 1. 
It means that the accuracy of the proposed method is almost the same as the 
commonly used Gauss implicit -matrix method.

Tab. 2 Final Converged Voltage Solutions [5]

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.
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BIBC matrix and BCBV matrix   
Tab.4 lists the number of iterations and the normalized execution time for both 
methods. It can be seen that method 2 is more efficient, especially when the network 
size increases, 

It is because the time-consuming processes such as LU factorization and 
forward/backward substitution of  Y-bus matrix are not necessary for method 2.

Tab. 3 Test Feeder [5] Tab. 4 Number of iteration and Normalized Execution Time [5]

[5] Jen-Hao Teng, "A direct approach for distribution system load flow solutions," in IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 882-887, July 2003.



Node voltage calculations (quadratic equation)

40

The quadratic equation relates the voltage magnitude at the receiving end to the branch power 
and the voltage at the sending end. 

Let us consider a distribution line model as below, the real and reactive power at the receiving 
end can be written as

𝑃𝑃𝑏𝑏 =
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏
𝑍𝑍

cos 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 −
𝑉𝑉𝑏𝑏2

𝑍𝑍
cos(𝜃𝜃𝑧𝑧)

𝑄𝑄𝑏𝑏 =
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏
𝑍𝑍

sin 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 −
𝑉𝑉𝑏𝑏2

𝑍𝑍
sin(𝜃𝜃𝑧𝑧)

cos 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 =
𝑃𝑃𝑏𝑏𝑍𝑍
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏

+
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏
𝑉𝑉𝑠𝑠

cos(𝜃𝜃𝑧𝑧)

sin 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 =
𝑄𝑄𝑏𝑏𝑍𝑍
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏

+
𝑉𝑉𝑠𝑠𝑉𝑉𝑏𝑏
𝑉𝑉𝑠𝑠

sin(𝜃𝜃𝑧𝑧)

𝑆𝑆𝑎𝑎𝑠𝑠2 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 +𝑠𝑠𝑎𝑎𝑛𝑛2 𝜃𝜃𝑧𝑧 − 𝛿𝛿𝑠𝑠 + 𝛿𝛿𝑏𝑏 =1

𝑉𝑉𝑏𝑏4 + 2𝑉𝑉𝑏𝑏2(𝑃𝑃𝑏𝑏R+𝑄𝑄𝑏𝑏X)− 𝑉𝑉𝑠𝑠2𝑉𝑉𝑏𝑏2 +(𝑃𝑃𝑏𝑏2 + 𝑄𝑄𝑏𝑏2)𝑍𝑍2 = 0

Node voltages are calculated by solving this quadratic equation

𝑉𝑉𝑏𝑏2= 𝑉𝑉𝑠𝑠2 − 2(𝑃𝑃𝑏𝑏R+𝑄𝑄𝑏𝑏X) + (𝑃𝑃𝑟𝑟2 + 𝑄𝑄𝑟𝑟2)𝑍𝑍2
𝑉𝑉𝑠𝑠2

[3] U. Eminoglu & M. H. Hocaoglu, “Distribution Systems Forward/ Backward Sweep-based Power Flow Algorithms: A Review and Comparison Study’, in Electric Power 
Components and Systems, 37:1, 91-110, 2008

Fig.14A two-bus distribution network [3]



Dist-Flow method (single phase)

41

Fig.15 Dist-Flow Demonstration [6]

𝑆𝑆𝑖𝑖 + 𝑎𝑎𝑞𝑞𝑖𝑖 𝑆𝑆𝑖𝑖+1 + 𝑎𝑎𝑞𝑞𝑖𝑖+1

• 𝑆𝑆𝑖𝑖+1
(𝑎𝑎) , 𝑞𝑞𝑖𝑖+1

(𝑎𝑎) : Power consumptions at Bus j+1

• 𝑆𝑆𝑖𝑖+1
(𝑔𝑔) , 𝑞𝑞𝑖𝑖+1

(𝑔𝑔) : Power generations at Bus j+1
• 𝑡𝑡𝑖𝑖 , 𝑥𝑥𝑖𝑖: Complex impedance of the line between 

Bus j to Bus j+1

• rj
Pj
2+Qj

2

Vj
2 , xj

Pj
2+Qj

2

Vj
2 : Active and reactive power 

losses of the line between Bus j to Bus j+1

Active (𝑃𝑃𝑖𝑖+1) and Reactive (𝑄𝑄𝑖𝑖+1) Branch Power Flow from Bus j to Bus j+1:

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1 − rj
Pj2 + Qj

2

Vj2
𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − xj

Pj2 + Qj
2

Vj2

𝑆𝑆𝑖𝑖+1 = 𝑆𝑆𝑖𝑖+1
(𝑎𝑎) −𝑆𝑆𝑖𝑖+1

(𝑔𝑔) 𝑞𝑞𝑖𝑖+1 = 𝑞𝑞𝑖𝑖+1
(𝑎𝑎) −𝑞𝑞𝑖𝑖+1

(𝑔𝑔)

𝑉𝑉𝑖𝑖+12 = 𝑉𝑉𝑖𝑖2 −2 𝑡𝑡𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖 + rj2 + xj2
Pj
2+Qj

2

Vj
2Nodal Voltage (𝑉𝑉𝑖𝑖+1) on Bus j+1:

[6] Q. Zhang, K. Dehghanpour and Z. Wang, "Distributed CVR in Unbalanced Distribution Systems With PV Penetration," in IEEE Transactions on Smart Grid, vol. 10, 
no. 5, pp. 5308-5319, Sept. 2019.
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Forward nodal voltage calculation:

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1 − rj
Pj2 + Qj

2

Vj2
𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − xj

Pj2 + Qj
2

Vj2

𝑉𝑉𝑖𝑖+12 = 𝑉𝑉𝑖𝑖2 −2 𝑡𝑡𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖 + rj2 + xj2
Pj
2+Qj

2

Vj
2

Backward branch power flow and branch power loss calculation:

The calculation is ended when certain values (for example, bus voltages or the 
system’s total active and reactive power loss mismatches) are lower than a specified 
error value.
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The branch power flow and voltage constraints in Dist-Flow method have power loss terms 

(Pi
2+Qi

2

Vi
2 ) that make the problem nonlinear. 

There are several methods to linearize the nonlinear power loss terms:

(1) Neglect the nonlinear terms 
The linearization is based on the fact that the nonlinear terms are much smaller than the 
linear terms. So that the nonlinear terms are neglected for the sake of developing efficient 
solution algorithms. 

However, it is noted that such linearization neglects an accurate calculation of power loss. 

𝑉𝑉𝑖𝑖+12 = 𝑉𝑉𝑖𝑖2 −2 𝑡𝑡𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1

𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1

𝑉𝑉𝑖𝑖+12 = 𝑉𝑉𝑖𝑖2 −2 𝑡𝑡𝑖𝑖𝑃𝑃𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑄𝑄𝑖𝑖 + ri2 + xi2
Pi
2+Qi

2

Vi
2

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1 − ri
Pi2 + Qi

2

Vi2

𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − xi
Pi2 + Qi

2

Vi2
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(2) Piecewise linear formulation (more accurate)

The quadratic calculation of branch active power losses (𝑃𝑃𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = ri
Pi
2+Qi

2

Vi
2 ) and reactive 

power losses (𝑄𝑄𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = xi
Pi
2+Qi

2

Vi
2 ) can be linearized through piecewise linear formulation. 

Fig.16 Piecewise Linear Formulation [7]

Linear equation slopes

Fully Linearized Dist-Flow method (single phase)

[7] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE 
Transactions on Smart Grid, vol. 10, no. 1, pp. 782-793, Jan. 2019.

𝑓𝑓𝑖𝑖 𝑥𝑥 =
𝑅𝑅𝑖𝑖
𝑉𝑉02

𝑥𝑥2

𝑔𝑔𝑖𝑖 𝑥𝑥 =
𝑋𝑋𝑖𝑖
𝑉𝑉02

𝑥𝑥2

𝑎𝑎𝑖𝑖𝑘𝑘 =
𝑓𝑓𝑖𝑖 𝑃𝑃𝑖𝑖

(𝑘𝑘) − 𝑓𝑓𝑖𝑖 𝑃𝑃𝑖𝑖
(𝑘𝑘−1)

𝑃𝑃𝑖𝑖
(𝑘𝑘) − 𝑃𝑃𝑖𝑖

(𝑘𝑘−1)

𝑏𝑏𝑖𝑖𝑛𝑛 =
𝑓𝑓𝑖𝑖 𝑄𝑄𝑖𝑖

(𝑛𝑛) − 𝑓𝑓𝑖𝑖 𝑄𝑄𝑖𝑖
(𝑛𝑛−1)

𝑄𝑄𝑖𝑖
(𝑛𝑛) − 𝑄𝑄𝑖𝑖

(𝑛𝑛−1)

𝑆𝑆𝑖𝑖𝑘𝑘 =
𝑔𝑔𝑖𝑖 𝑃𝑃𝑖𝑖

(𝑘𝑘) − 𝑔𝑔𝑖𝑖 𝑃𝑃𝑖𝑖
(𝑘𝑘−1)

𝑃𝑃𝑖𝑖
(𝑘𝑘) − 𝑃𝑃𝑖𝑖

(𝑘𝑘−1)

𝑆𝑆𝑖𝑖𝑛𝑛 =
𝑔𝑔𝑖𝑖 𝑄𝑄𝑖𝑖

(𝑛𝑛) − 𝑔𝑔𝑖𝑖 𝑄𝑄𝑖𝑖
(𝑛𝑛−1)

𝑄𝑄𝑖𝑖
(𝑛𝑛) − 𝑄𝑄𝑖𝑖

(𝑛𝑛−1)
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Linear calculation for the complex power loss:

Piecewise power flow variable can vary only within its corresponding interval:

Fully Linearized Dist-Flow method (single phase)

𝑃𝑃𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = �
𝑘𝑘∈𝐾𝐾𝑖𝑖

𝑎𝑎𝑖𝑖,𝑘𝑘 𝑃𝑃𝑖𝑖,𝑘𝑘 − 𝑃𝑃𝑖𝑖,𝑘𝑘∗ + �
𝑛𝑛∈𝐿𝐿𝑖𝑖

𝑏𝑏𝑖𝑖,𝑛𝑛 𝑄𝑄𝑖𝑖,𝑛𝑛 − 𝑄𝑄𝑖𝑖,𝑛𝑛∗

𝑄𝑄𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 = �
𝑘𝑘∈𝐾𝐾𝑖𝑖

𝑆𝑆𝑖𝑖,𝑘𝑘 𝑃𝑃𝑖𝑖,𝑘𝑘 − 𝑃𝑃𝑖𝑖,𝑘𝑘∗ + �
𝑛𝑛∈𝐿𝐿𝑖𝑖

𝑆𝑆𝑖𝑖,𝑛𝑛 𝑄𝑄𝑖𝑖,𝑛𝑛 − 𝑄𝑄𝑖𝑖,𝑛𝑛∗

0≤ 𝑃𝑃𝑖𝑖,𝑘𝑘≤ 𝑃𝑃𝑖𝑖
𝑘𝑘 − 𝑃𝑃𝑖𝑖

(𝑘𝑘−1)

𝑃𝑃𝑖𝑖
𝑘𝑘−1 − 𝑃𝑃𝑖𝑖

(𝑘𝑘) ≤ 𝑃𝑃𝑖𝑖,𝑘𝑘∗ ≤0

0≤ 𝑄𝑄𝑖𝑖,𝑘𝑘≤ 𝑄𝑄𝑖𝑖
𝑛𝑛 − 𝑄𝑄𝑖𝑖

(𝑛𝑛−1)

𝑄𝑄𝑖𝑖
𝑛𝑛−1 − 𝑄𝑄𝑖𝑖

(𝑘𝑘) ≤ 𝑄𝑄𝑖𝑖,𝑛𝑛∗ ≤0

Based on the piecewise linear formulation, the fully linearized Dist-Flow with power loss is 
developed as: 

[7] C. Zhang, Y. Xu, Z. Dong and J. Ravishankar, "Three-Stage Robust Inverter-Based Voltage/Var Control for Distribution Networks With High-Level PV," in IEEE 
Transactions on Smart Grid, vol. 10, no. 1, pp. 782-793, Jan. 2019.

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1 − 𝑃𝑃𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠

𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − 𝑄𝑄𝑖𝑖𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠

𝑃𝑃𝑖𝑖+1 = 𝑃𝑃𝑖𝑖 − 𝑆𝑆𝑖𝑖+1 − ri
Pi2 + Qi

2

Vi2

𝑄𝑄𝑖𝑖+1 = 𝑄𝑄𝑖𝑖 − 𝑞𝑞𝑖𝑖+1 − xi
Pi2 + Qi

2

Vi2



Formulations are developed by L. Gan and S. Low at Caltech (Patent number: 
US20150346753A1) [8]:
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𝑉𝑉𝑖𝑖𝑚𝑚
2

𝑉𝑉𝑖𝑖𝑎𝑎
2

𝑉𝑉𝑖𝑖𝑎𝑎
2

−
𝑉𝑉𝑖𝑖𝑚𝑚 2

𝑉𝑉𝑖𝑖𝑎𝑎
2

𝑉𝑉𝑖𝑖𝑎𝑎 2

+ 2
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 �𝑅𝑅𝑚𝑚𝑚𝑚 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑚𝑚𝑎𝑎 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑚𝑚𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 �𝑋𝑋𝑚𝑚𝑚𝑚 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑚𝑚𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑚𝑚𝑎𝑎
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 �𝑅𝑅𝑎𝑎𝑚𝑚 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 �𝑋𝑋𝑎𝑎𝑚𝑚 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑎𝑎𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑎𝑎𝑎𝑎
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 �𝑅𝑅𝑎𝑎𝑚𝑚 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 �𝑅𝑅𝑎𝑎𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 �𝑋𝑋𝑎𝑎𝑚𝑚 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑎𝑎𝑎𝑎 + 𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 �𝑋𝑋𝑎𝑎𝑎𝑎

= 0

Extension to unbalanced three-phase systems
• Up to this point, it has only considered the single phase; however, distribution networks 

are inherently three-phase unbalanced.
• Also, the coupling between phases for the system voltages requires additional 

approximations to simplify the unbalanced case.

[8] Gan, Lingwen, and Steven H. Low. "Systems and Methods for Convex Relaxations and Linear Approximations for Optimal Power Flow in Multiphase Radial 
Networks." U.S. Patent Application No. 14/724,757.
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In single-phase distribution system, it has

𝑉𝑉𝑖𝑖 = 𝑉𝑉𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑘𝑘
𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑗𝑗𝑄𝑄𝑖𝑖𝑖𝑖

𝑉𝑉𝑖𝑖∗

𝑆𝑆𝑖𝑖𝑖𝑖
𝜙𝜙∗ = 𝑃𝑃𝑖𝑖𝑖𝑖

𝜙𝜙 − 𝑗𝑗𝑄𝑄𝑖𝑖𝑖𝑖
𝜙𝜙

𝑉𝑉𝑖𝑖
𝜙𝜙 = 𝑉𝑉𝑖𝑖

𝜙𝜙 − 𝑧𝑧𝑖𝑖𝑖𝑖
𝜙𝜙 𝑆𝑆𝑖𝑖𝑖𝑖

𝜙𝜙∗∅𝑉𝑉𝑖𝑖
𝜙𝜙∗

Where 𝑉𝑉𝑖𝑖
𝜙𝜙 = 𝑉𝑉𝑖𝑖𝑚𝑚,𝑉𝑉𝑖𝑖𝑎𝑎,𝑉𝑉𝑖𝑖𝑎𝑎

𝑇𝑇
, 𝑉𝑉𝑖𝑖

𝜙𝜙 = 𝑉𝑉𝑖𝑖𝑚𝑚,𝑉𝑉𝑖𝑖𝑎𝑎,𝑉𝑉𝑖𝑖𝑎𝑎
𝑇𝑇

, 𝑃𝑃𝑖𝑖𝑖𝑖
𝜙𝜙 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 ,𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 ,𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎

𝑇𝑇
, 𝑄𝑄𝑖𝑖𝑖𝑖

𝜙𝜙

= 𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚 ,𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎 ,𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎
𝑇𝑇

, 𝑧𝑧𝑖𝑖𝑖𝑖
𝜙𝜙 ∈ ∁3×3 

 ∅ and ⨀ denote the element-wise division multiplication, respectively. 

• Unlike the per-phase equivalent case, multiplying by the complex conjugate of both side 
of the three-phase formulation will not remove the dependence on 𝜃𝜃. 

• This is due to the fact that there is a coupling between the phase at bus i that arises from 
the cross-products of the three-phase equations for the phase voltage and line current. 

[9] Anmar Arif, “Distribution system outage management after extreme weather events”, PhD Dissertation, Iowa State University, 2019.

Extend to three-phase system, it has
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To address this problem, it has observed that the voltage magnitude between the 
phases are similar, i.e., 𝑉𝑉𝑖𝑖𝑚𝑚 ≈ 𝑉𝑉𝑖𝑖𝑎𝑎 ≈ 𝑉𝑉𝑖𝑖𝑎𝑎 , and that the phase unbalances on each 
bus are not very severe, so it assumes that the voltages are nearly balanced. Thus, it 
can approximate the phase different at bus i as:

cos 𝜃𝜃𝑖𝑖𝑚𝑚 − 𝜃𝜃𝑖𝑖𝑎𝑎 = cos
2
3
𝜋𝜋 + 𝜃𝜃∗ = −

1
2

cos 𝜃𝜃∗ −
3

2
sin 𝜃𝜃∗ ≈ −

1
2

sin 𝜃𝜃𝑖𝑖𝑚𝑚 − 𝜃𝜃𝑖𝑖𝑎𝑎 = sin
2
3
𝜋𝜋 + 𝜃𝜃∗ =

1
2

cos 𝜃𝜃∗ +
3

2
sin 𝜃𝜃∗ ≈

3
2

Where 𝜃𝜃∗represents the relative phase unbalance, which is sufficiently small. 
Therefore, the nearly balanced voltages are

[9] Anmar Arif, “Distribution system outage management after extreme weather events”, PhD Dissertation, Iowa State University, 2019.

𝑉𝑉𝑖𝑖𝑚𝑚

𝑉𝑉𝑖𝑖𝑎𝑎
≈
𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑖𝑖𝑎𝑎
≈
𝑉𝑉𝑖𝑖𝑎𝑎

𝑉𝑉𝑖𝑖𝑚𝑚
≈ 𝑆𝑆𝑖𝑖 ⁄2𝜋𝜋 3
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It can update the voltage magnitude in Dist-Flow method for the unbalanced 
case with

𝑉𝑉𝑖𝑖𝑚𝑚
2

𝑉𝑉𝑖𝑖𝑎𝑎
2

𝑉𝑉𝑖𝑖𝑎𝑎
2

=
𝑉𝑉𝑖𝑖𝑚𝑚 2

𝑉𝑉𝑖𝑖𝑎𝑎
2

𝑉𝑉𝑖𝑖𝑎𝑎 2
− �̃�𝑧𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖𝑖𝑖∗ − �̃�𝑧𝑖𝑖𝑖𝑖∗ 𝑆𝑆𝑖𝑖𝑖𝑖

𝑆𝑆𝑖𝑖𝑖𝑖 =
𝑃𝑃𝑖𝑖𝑖𝑖𝑚𝑚 + 𝑗𝑗𝑄𝑄𝑖𝑖𝑖𝑖𝑚𝑚

𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑗𝑗𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎

𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑗𝑗𝑄𝑄𝑖𝑖𝑖𝑖𝑎𝑎

�̃�𝑧𝑖𝑖𝑖𝑖 = 𝛼𝛼 ⊙ 𝑧𝑧𝑖𝑖𝑖𝑖 =
1 𝑆𝑆−𝑖𝑖 ⁄2𝜋𝜋 3 𝑆𝑆𝑖𝑖 ⁄2𝜋𝜋 3

𝑆𝑆𝑖𝑖 ⁄2𝜋𝜋 3 1 𝑆𝑆−𝑖𝑖 ⁄2𝜋𝜋 3

𝑆𝑆−𝑖𝑖 ⁄2𝜋𝜋 3 𝑆𝑆𝑖𝑖 ⁄2𝜋𝜋 3 1
⊙

𝑧𝑧𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 𝑧𝑧𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎 𝑧𝑧𝑖𝑖𝑖𝑖𝑚𝑚𝑎𝑎

𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑚𝑚 𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎

𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑚𝑚 𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎 𝑧𝑧𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎

where

[9] Anmar Arif, “Distribution system outage management after extreme weather events”, PhD Dissertation, Iowa State University, 2019.

𝛼𝛼 is Phase shift matrix



50

Apply above equations to Dist-Flow formulation to for the extension to unbalanced three-phase 
systems.  

Extension to unbalanced three-phase systems

[9] Anmar Arif, “Distribution system outage management after extreme weather events”, PhD Dissertation, Iowa State University, 2019.

𝑃𝑃𝑖𝑖
𝜙𝜙 = 𝑃𝑃𝑖𝑖

𝜙𝜙 − 𝑆𝑆𝑖𝑖
𝜙𝜙 − 𝑡𝑡𝑖𝑖𝑖𝑖

𝜙𝜙 𝑃𝑃𝑖𝑖
𝜙𝜙 2

+ 𝑄𝑄𝑖𝑖
𝜙𝜙 2

𝑉𝑉𝑖𝑖
𝜙𝜙 2 𝑄𝑄𝑖𝑖

𝜙𝜙 = 𝑄𝑄𝑖𝑖
𝜙𝜙 − 𝑞𝑞𝑖𝑖

𝜙𝜙 − 𝑧𝑧𝑖𝑖𝑖𝑖
𝜙𝜙 𝑃𝑃𝑖𝑖

𝜙𝜙 2
+ 𝑄𝑄𝑖𝑖

𝜙𝜙 2

𝑉𝑉𝑖𝑖
𝜙𝜙 2

𝑡𝑡𝑖𝑖𝑖𝑖
𝜙𝜙=real(𝛼𝛼 ⊙ 𝑧𝑧𝑖𝑖𝑖𝑖)

𝑧𝑧𝑖𝑖𝑖𝑖
𝜙𝜙=imag(𝛼𝛼 ⊙ 𝑧𝑧𝑖𝑖𝑖𝑖)
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Validation

Fig.17 IEEE 123-bus system: actual vs simulated results [9]

In [9], the validation of this unbalanced approximation method VS OpenDSS 
simulated results.   

[9] Anmar Arif, “Distribution system outage management after extreme weather events”, PhD Dissertation, Iowa State University, 2019.



52

Power flow in OpenDSS 
However, OpenDSS manual [10] says that:

[10] “Reference guide: The OpenDSS”, [online]: https://www.epri.com/#/pages/sa/opendss?lang=en

https://www.epri.com/#/pages/sa/opendss?lang=en
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Modified Newton-Raphson method 

[11] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis," in IEEE Transactions on Power System, vol. 12, no. 1, 
pp. 882-887, Feb 1997.

In [11], A modified Newton method for radial distribution system is derived in which the 
Jacobian matrix is in 𝑈𝑈𝐷𝐷𝑈𝑈𝑇𝑇 form, where 𝑈𝑈 is a constant upper triangular matrix depending 
only on system topology and 𝐷𝐷  is a block diagonal matrix. With this formulation, the 
conventional steps of forming the Jacobian matrix are replaced by back/forward sweeps on 
radial feeders with equivalent impedances. 
In conventional Newton-Raphson method, the power flow problem is to solve 

where

𝐻𝐻 𝑁𝑁
𝐽𝐽 𝑍𝑍

∆𝜃𝜃
∆ ⁄𝑉𝑉 𝑉𝑉 = ∆𝑃𝑃

∆𝑄𝑄

𝐻𝐻𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝐻𝐻𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖 ,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝑁𝑁𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 2𝑉𝑉𝑖𝑖2 𝐺𝐺𝑖𝑖𝑖𝑖

𝐽𝐽𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝐽𝐽𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝑍𝑍𝑖𝑖𝑖𝑖 = −𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 sin 𝜃𝜃𝑖𝑖𝑖𝑖 − 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 + 2𝑉𝑉𝑖𝑖2 𝐵𝐵𝑖𝑖𝑖𝑖
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Modified Newton-Raphson method 

[11] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis," in IEEE Transactions on Power System, vol. 12, no. 1, 
pp. 882-887, Feb 1997.

Assumption 1: small voltage difference between two adjacent nodes (typical 
distribution lines are short and line flows are not high).
Assumption 2: no shunt branches (all the shunt branches can be converted to node 
power injections using initial and updated node voltages).

Therefore, the Jacobian matrix can be approximated as:

𝐻𝐻𝑖𝑖𝑖𝑖 ≈ 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝐻𝐻𝑖𝑖𝑖𝑖 ≈ −𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖

𝑁𝑁𝑖𝑖𝑖𝑖 ≈ −𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎 𝑁𝑁𝑖𝑖𝑖𝑖 ≈ 𝑉𝑉𝑖𝑖 �
𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 

𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖

𝐽𝐽𝑖𝑖𝑖𝑖 ≈ 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎
𝐽𝐽𝑖𝑖𝑖𝑖 ≈ −𝑉𝑉𝑖𝑖 �

𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 
𝑉𝑉𝑖𝑖 𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖

𝑍𝑍𝑖𝑖𝑖𝑖 ≈ 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖 , 𝑗𝑗 ≠ 𝑎𝑎
𝑍𝑍𝑖𝑖𝑖𝑖 ≈ −𝑉𝑉𝑖𝑖 �

𝑖𝑖∈𝑁𝑁𝑖𝑖,𝑖𝑖≠𝑖𝑖 
𝑉𝑉𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖

The matrices H, N, J and L all have the same properties (symmetry, sparsity 
pattern) as the Nodal Admittance Matrix. 
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Modified Newton-Raphson method 

[11] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis," in IEEE Transactions on Power System, vol. 12, no. 1, 
pp. 882-887, Feb 1997.

Hence, the matrices H, N, J and L can be formed as:
𝐻𝐻 = 𝑍𝑍 = 𝐴𝐴𝑛𝑛−1𝐷𝐷𝐵𝐵𝐴𝐴𝑛𝑛−1𝑇𝑇

𝐽𝐽 = −𝑁𝑁 = 𝐴𝐴𝑛𝑛−1𝐷𝐷𝐺𝐺𝐴𝐴𝑛𝑛−1𝑇𝑇

where 𝐷𝐷𝐵𝐵 and 𝐷𝐷𝐵𝐵 are diagonal matrices with diagonal entries to be 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖 cos 𝜃𝜃𝑖𝑖𝑖𝑖 
and 𝑉𝑉𝑖𝑖𝑉𝑉𝑖𝑖𝐺𝐺𝑖𝑖𝑖𝑖 cos𝜃𝜃𝑖𝑖𝑖𝑖, respectively. Therefore, the conventional Newton Raphson can be 
rewritten as: 𝐴𝐴𝑛𝑛−1 0

0 𝐴𝐴𝑛𝑛−1
𝐷𝐷𝐵𝐵 −𝐷𝐷𝐺𝐺
𝐷𝐷𝐺𝐺 𝐷𝐷𝐵𝐵

𝐴𝐴𝑛𝑛−1𝑇𝑇 0
0 𝐴𝐴𝑛𝑛−1𝑇𝑇

∆𝜃𝜃
∆ ⁄𝑉𝑉 𝑉𝑉 = ∆𝑃𝑃

∆𝑄𝑄

𝐴𝐴𝑛𝑛−1 is an upper triangular matrix with all diagonal entries to be 1 and all non-zero 
off-diagonal entries to be -1. 
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Modified Newton-Raphson method 

[11] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis," in IEEE Transactions on Power System, vol. 12, no. 1, 
pp. 882-887, Feb 1997.

By now it has shown that the Jacobian matrix can be formed as the product of three 
square matrices. It can be solved by back/forward sweeps as well. It defines:

�̇�𝐸 = ∆𝜃𝜃 + 𝑗𝑗 ⁄∆𝑉𝑉 𝑉𝑉

�̇�𝑆 = ∆𝑃𝑃 + 𝑗𝑗∆𝑄𝑄

�̇�𝑘 = 𝐷𝐷𝐵𝐵 + 𝑗𝑗𝐷𝐷𝐺𝐺
Therefore, the formulations in Newton-Raphson method can be modified:  

𝐴𝐴𝑛𝑛−1�̇�𝑘𝐴𝐴𝑛𝑛−1𝑇𝑇 �̇�𝐸= ̇𝑆𝑆𝐿𝐿
𝐴𝐴𝑛𝑛−1 ̇𝑆𝑆𝐿𝐿 = �̇�𝑆

�̇�𝑘𝐴𝐴𝑛𝑛−1𝑇𝑇 �̇�𝐸= ̇𝑆𝑆𝐿𝐿
When solving �̇�𝐸, the diagonal matrix �̇�𝑘 can be inverted for each line. The diagonal in 
�̇�𝑘−1 is denoted as the equivalent line impedance: 

𝑍𝑍𝑛𝑛𝑒𝑒=𝑅𝑅𝑛𝑛𝑒𝑒 +j𝑋𝑋𝑛𝑛𝑒𝑒
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Modified Newton-Raphson method 

[11] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis," in IEEE Transactions on Power System, vol. 12, no. 1, 
pp. 882-887, Feb 1997.

𝐴𝐴𝑛𝑛−1 ̇𝑆𝑆𝐿𝐿 = �̇�𝑆

𝑘𝑘𝐴𝐴𝑛𝑛−1𝑇𝑇 �̇�𝐸= ̇𝑆𝑆𝐿𝐿

Backward sweep

Forward sweep

Fig.18 Flowchart of the modified Newton-Raphson method [11]
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